Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.891
Filtrar
1.
Nat Commun ; 15(1): 3081, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594279

RESUMO

Tactile sensation and vision are often both utilized for the exploration of objects that are within reach though it is not known whether or how these two distinct sensory systems combine such information. Here in mice, we used a combination of stereo photogrammetry for 3D reconstruction of the whisker array, brain-wide anatomical tracing and functional connectivity analysis to explore the possibility of tacto-visual convergence in sensory space and within the circuitry of the primary visual cortex (VISp). Strikingly, we find that stimulation of the contralateral whisker array suppresses visually evoked activity in a tacto-visual sub-region of VISp whose visual space representation closely overlaps with the whisker search space. This suppression is mediated by local fast-spiking interneurons that receive a direct cortico-cortical input predominantly from layer 6 neurons located in the posterior primary somatosensory barrel cortex (SSp-bfd). These data demonstrate functional convergence within and between two primary sensory cortical areas for multisensory object detection and recognition.


Assuntos
Neurônios , Tato , Camundongos , Animais , Neurônios/fisiologia , Tato/fisiologia , Interneurônios , Reconhecimento Psicológico , Córtex Somatossensorial/fisiologia , Vibrissas/fisiologia
2.
PLoS One ; 19(4): e0301713, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593141

RESUMO

Local Field Potential (LFP), despite its name, often reflects remote activity. Depending on the orientation and synchrony of their sources, both oscillations and more complex waves may passively spread in brain tissue over long distances and be falsely interpreted as local activity at such distant recording sites. Here we show that the whisker-evoked potentials in the thalamic nuclei are of local origin up to around 6 ms post stimulus, but the later (7-15 ms) wave is overshadowed by a negative component reaching from cortex. This component can be analytically removed and local thalamic LFP can be recovered reliably using Current Source Density analysis. We used model-based kernel CSD (kCSD) method which allowed us to study the contribution of local and distant currents to LFP from rat thalamic nuclei and barrel cortex recorded with multiple, non-linear and non-regular multichannel probes. Importantly, we verified that concurrent recordings from the cortex are not essential for reliable thalamic CSD estimation. The proposed framework can be used to analyze LFP from other brain areas and has consequences for general LFP interpretation and analysis.


Assuntos
Potenciais Somatossensoriais Evocados , Tálamo , Ratos , Animais , Tálamo/fisiologia , Potenciais Evocados , Núcleos Talâmicos , Córtex Cerebral , Córtex Somatossensorial/fisiologia
3.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642106

RESUMO

The spatial coding of tactile information is functionally essential for touch-based shape perception and motor control. However, the spatiotemporal dynamics of how tactile information is remapped from the somatotopic reference frame in the primary somatosensory cortex to the spatiotopic reference frame remains unclear. This study investigated how hand position in space or posture influences cortical somatosensory processing. Twenty-two healthy subjects received electrical stimulation to the right thumb (D1) or little finger (D5) in three position conditions: palm down on right side of the body (baseline), hand crossing the body midline (effect of position), and palm up (effect of posture). Somatosensory-evoked potentials (SEPs) were recorded using electroencephalography. One early-, two mid-, and two late-latency neurophysiological components were identified for both fingers: P50, P1, N125, P200, and N250. D1 and D5 showed different cortical activation patterns: compared with baseline, the crossing condition showed significant clustering at P1 for D1, and at P50 and N125 for D5; the change in posture showed a significant cluster at N125 for D5. Clusters predominated at centro-parietal electrodes. These results suggest that tactile remapping of fingers after electrical stimulation occurs around 100-125 ms in the parietal cortex.


Assuntos
Percepção do Tato , Tato , Humanos , Tato/fisiologia , Dedos/fisiologia , Percepção do Tato/fisiologia , Mãos/fisiologia , Eletroencefalografia , Córtex Somatossensorial
4.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602737

RESUMO

Sensory differences are a core feature of autism spectrum disorders (ASD) and are predictive of other ASD core symptoms such as social difficulties. However, the neurobiological substrate underlying the functional relationship between sensory and social functioning is poorly understood. Here, we examined whether misregulation of structural plasticity in the somatosensory cortex modulates aberrant social functioning in BTBR mice, a mouse model for autism spectrum disorder-like phenotypes. By locally expressing a dominant-negative form of Cofilin (CofilinS3D; a key regulator of synaptic structure) in the somatosensory cortex, we tested whether somatosensory suppression of Cofilin activity alters social functioning in BTBR mice. Somatosensory Cofilin suppression altered social contact and nest-hide behavior of BTBR mice in a social colony, assessed for seven consecutive days. Subsequent behavioral testing revealed that altered social functioning is related to altered tactile sensory perception; CofilinS3D-treated BTBR mice showed a time-dependent difference in the sensory bedding preference task. These findings show that Cofilin suppression in the somatosensory cortex alters social functioning in BTBR mice and that this is associated with tactile sensory processing, a critical indicator of somatosensory functioning.


Assuntos
Transtorno do Espectro Autista , Córtex Somatossensorial , Animais , Camundongos , Modelos Animais de Doenças , Fatores de Despolimerização de Actina , Tato
5.
Cell Rep ; 43(3): 113884, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38458194

RESUMO

Primate hands house an array of mechanoreceptors and proprioceptors, which are essential for tactile and kinematic information crucial for daily motor action. While the regulation of these somatosensory signals is essential for hand movements, the specific central nervous system (CNS) location and mechanism remain unclear. Our study demonstrates the attenuation of somatosensory signals in the cuneate nucleus during voluntary movement, suggesting significant modulation at this initial relay station in the CNS. The attenuation is comparable to the cerebral cortex but more pronounced than in the spinal cord, indicating the cuneate nuclei's role in somatosensory perception modulation during movement. Moreover, our findings suggest that the descending motor tract may regulate somatosensory transmission in the cuneate nucleus, enhancing relevant signals and suppressing unnecessary ones for the regulation of movement. This process of recurrent somatosensory modulation between cortical and subcortical areas could be a basic mechanism for modulating somatosensory signals to achieve active perception.


Assuntos
Mãos , Bulbo , Animais , Bulbo/fisiologia , Medula Espinal/fisiologia , Tato , Primatas , Córtex Somatossensorial/fisiologia , Movimento/fisiologia
7.
J Physiol Sci ; 74(1): 16, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475711

RESUMO

The balance of activity between glutamatergic and GABAergic networks is particularly important for oscillatory neural activities in the brain. Here, we investigated the roles of GABAB receptors in network oscillation in the oral somatosensory cortex (OSC), focusing on NMDA receptors. Neural oscillation at the frequency of 8-10 Hz was elicited in rat brain slices after caffeine application. Oscillations comprised a non-NMDA receptor-dependent initial phase and a later NMDA receptor-dependent oscillatory phase, with the oscillator located in the upper layer of the OSC. Baclofen was applied to investigate the actions of GABAB receptors. The later NMDA receptor-dependent oscillatory phase completely disappeared, but the initial phase did not. These results suggest that GABAB receptors mainly act on NMDA receptor, in which metabotropic actions of GABAB receptors may contribute to the attenuation of NMDA receptor activities. A regulatory system for network oscillation involving GABAB receptors may be present in the OSC.


Assuntos
Receptores de GABA-B , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de GABA-B/metabolismo , Córtex Somatossensorial/metabolismo , Baclofeno
8.
Sci Rep ; 14(1): 6302, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491035

RESUMO

Multisensory integration is necessary for the animal to survive in the real world. While conventional methods have been extensively used to investigate the multisensory integration process in various brain areas, its long-range interactions remain less explored. In this study, our goal was to investigate interactions between visual and somatosensory networks on a whole-brain scale using 15.2-T BOLD fMRI. We compared unimodal to bimodal BOLD fMRI responses and dissected potential cross-modal pathways with silencing of primary visual cortex (V1) by optogenetic stimulation of local GABAergic neurons. Our data showed that the influence of visual stimulus on whisker activity is higher than the influence of whisker stimulus on visual activity. Optogenetic silencing of V1 revealed that visual information is conveyed to whisker processing via both V1 and non-V1 pathways. The first-order ventral posteromedial thalamic nucleus (VPM) was functionally affected by non-V1 sources, while the higher-order posterior medial thalamic nucleus (POm) was predominantly modulated by V1 but not non-V1 inputs. The primary somatosensory barrel field (S1BF) was influenced by both V1 and non-V1 inputs. These observations provide valuable insights for into the integration of whisker and visual sensory information.


Assuntos
Imageamento por Ressonância Magnética , Tálamo , Camundongos , Animais , Tálamo/fisiologia , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiologia , Vibrissas/fisiologia
9.
Biol Pharm Bull ; 47(3): 591-599, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38447991

RESUMO

The pain matrix, which includes several brain regions that respond to pain sensation, contribute to the development of chronic pain. Thus, it is essential to understand the mechanism of causing chronic pain in the pain matrix such as anterior cingulate (ACC), or primary somatosensory (S1) cortex. Recently, combined experiment with the behavior tests and in vivo calcium imaging using fiber photometry revealed the interaction between the neuronal function in deep brain regions of the pain matrix including ACC and the phenotype of chronic pain. However, it remains unclear whether this combined experiment can identify the interaction between neuronal activity in S1, which receive pain sensation, and pain behaviors such as hyperalgesia or allodynia. In this study, to examine whether the interaction between change of neuronal activity in S1 and hyperalgesia in hind paw before and after causing inflammatory pain was detected from same animal, the combined experiment of in vivo fiber photometry system and von Frey hairs test was applied. This combined experiment detected that amplitude of calcium responses in S1 neurons increased and the mechanical threshold of hind paw decreased from same animals which have an inflammatory pain. Moreover, we found that the values between amplitude of calcium responses and mechanical thresholds were shifted to negative correlation after causing inflammatory pain. Thus, the combined experiment with fiber photometry and the behavior tests has a possibility that can simultaneously consider the interaction between neuronal activity in pain matrix and pain induced behaviors and the effects of analgesics or pain treatments.


Assuntos
Dor Crônica , Hiperalgesia , Animais , Camundongos , Escala de Avaliação Comportamental , Cálcio , Córtex Somatossensorial , Cálcio da Dieta , Modelos Animais de Doenças , Neurônios , Fotometria
10.
Neuroimage ; 289: 120561, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428551

RESUMO

Previous studies of vicarious touch suggest that we automatically simulate observed touch experiences in our own body representation including primary and secondary somatosensory cortex (SCx). However, whether these early sensory areas are activated in a reflexive manner and the extent with which such SCx activations represent touch qualities, like texture, remains unclear. We measured event-related potentials (ERPs) of SCx's hierarchical processing stages, which map onto successive somatosensory ERP components, to investigate the timing of vicarious touch effects. In the first experiment, participants (n = 43) merely observed touch or no-touch to a hand; in the second, participants saw different touch textures (soft foam and hard rubber) either touching a hand (other-directed) or they were instructed that the touch was self-directed and to feel the touch. Each touch sequence was followed by a go/no-go task. We probed SCx activity and isolated SCx vicarious touch activations from visual carry over effects. We found that vicarious touch conditions (touch versus no-touch and soft versus hard) did not modulate early sensory ERP components (i.e. P50, N80); but we found effects on behavioural responses to the subsequent go/no-go stimulus consistent with post-perceptual effects. When comparing other- with self-directed touch conditions, we found that early and mid-latency components (i.e. P50, N80, P100, N140) were modulated consistent with early SCx activations. Importantly, these early sensory activations were not modulated by touch texture. Therefore, SCx is purposely recruited when participants are instructed to attend to touch; but such activation only situates, rather than fully simulates, the seen tactile experience in SCx.


Assuntos
Córtex Somatossensorial , Percepção do Tato , Humanos , Córtex Somatossensorial/fisiologia , Potenciais Evocados/fisiologia , Mãos , Pele , Eletroencefalografia
11.
Neurosci Lett ; 828: 137753, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554843

RESUMO

The primary somatosensory cortex (S1) is responsible for processing information related to tactile stimulation, motor learning and control. Despite its significance, the connection between S1 and the primary motor cortex (M1), as well as its role in motor learning, remains a topic of ongoing exploration. In the present study, we silenced S1 by the GABA receptor agonist muscimol to study the potential roles of S1 in motor learning and task execution. Our results show that the inhibition of S1 leads to an immediate impairment in performance during the training session and also a substantial reduction in performance improvement during post-test session on the subsequent day. To understand the underlying mechanism, we used intravital two-photon imaging to investigate the dynamics of dendritic spines of layer V pyramidal neurons and the calcium activities of pyramidal neurons in M1 after inhibition of S1. Notably, S1 inhibition reduces motor training-induced spine formation and facilitates the elimination of existing spines of layer V pyramidal neurons in M1. The calcium activities in M1 exhibit a significant decrease during both resting and running periods following S1 inhibition. Furthermore, inhibition of S1, but not M1, significantly impairs the execution of the acquired motor task in the well-trained animals. Together, these findings reveal that S1 plays important roles in motor learning and task execution.


Assuntos
Cálcio , Córtex Somatossensorial , Animais , Córtex Somatossensorial/fisiologia , Células Piramidais/fisiologia , Inibição Psicológica
12.
Neuroscience ; 544: 128-137, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38447690

RESUMO

In Robo3cKO mice, midline crossing defects of the trigeminothalamic projections from the trigeminal principal sensory nucleus result in bilateral whisker maps in the somatosensory thalamus and consequently in the face representation area of the primary somatosensory (S1) cortex (Renier et al., 2017; Tsytsarev et al., 2017). We investigated whether this bilateral sensory representation in the whisker-barrel cortex is also reflected in the downstream projections from the S1 to the primary motor (M1) cortex. To label these projections, we injected anterograde viral axonal tracer in S1 cortex. Corticocortical projections from the S1 distribute to similar areas across the ipsilateral hemisphere in control and Robo3cKO mice. Namely, in both genotypes they extend to the M1, premotor/prefrontal cortex (PMPF), secondary somatosensory (S2) cortex. Next, we performed voltage-sensitive dye imaging (VSDi) in the left hemisphere following ipsilateral and contralateral single whisker stimulation. While controls showed only activation in the contralateral whisker barrel cortex and M1 cortex, the Robo3cKO mouse left hemisphere was activated bilaterally in both the barrel cortex and the M1 cortex. We conclude that the midline crossing defect of the trigeminothalamic projections leads to bilateral whisker representations not only in the thalamus and the S1 cortex but also downstream from the S1, in the M1 cortex.


Assuntos
Córtex Motor , Córtex Somatossensorial , Camundongos , Animais , Córtex Somatossensorial/fisiologia , Vibrissas/fisiologia , Córtex Motor/fisiologia , Tálamo/diagnóstico por imagem , Núcleos do Trigêmeo
13.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38438262

RESUMO

Layer 4 of the rodent somatosensory cortex has unitary structures called barrels that receive tactile information from individual vibrissae. Barrels in the anterolateral barrel subfield (ALBSF) are much smaller and have gained less attention than larger barrels in the posteromedial barrel subfield (PMBSF), though the former outnumber the latter. We compared the morphological features of barrels between the ALBSF and PMBSF in male mice using deformation-free tangential sections and confocal optical slice-based, precise reconstructions of barrels. The average volume of a single barrel in the ALBSF was 34.7% of that in the PMBSF, but the numerical density of parvalbumin (PV)-positive interneurons in the former was 1.49 times higher than that in the latter. Moreover, PV neuron density in septa was 2.08 times higher in the ALBSF than that in the PMBSF. The proportions of PV neuron number to both all neuron number and all GABAergic neuron number in the ALBSF were also higher than those in the PMBSF. Somata of PV neurons in barrels and septa in the ALBSF received 1.64 and 1.50 times more vesicular glutamate transporter Type 2-labeled boutons than those in the PMBSF, suggesting more potent feedforward inhibitory circuits in the ALBSF. The mode of connectivity through dendritic gap junctions among PV neurons also differed between the ALBSF and PMBSF. Clusters of smaller unitary structures containing a higher density of representative GABAergic interneurons with differential morphological features in the ALBSF suggest a division of functional roles in the two vibrissa-barrel systems, as has been demonstrated by behavioral studies.


Assuntos
Interneurônios , Parvalbuminas , Camundongos , Animais , Masculino , Córtex Somatossensorial/fisiologia , Vibrissas , Neurônios GABAérgicos , Contagem de Células
14.
J Physiol ; 602(7): 1405-1426, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38457332

RESUMO

Ocular Surface (OS) somatosensory innervation detects external stimuli producing perceptions, such as pain or dryness, the most relevant symptoms in many OS pathologies. Nevertheless, little is known about the central nervous system circuits involved in these perceptions, and how they integrate multimodal inputs in general. Here, we aim to describe the thalamic and cortical activity in response to OS stimulation of different modalities. Electrophysiological extracellular recordings in anaesthetized rats were used to record neural activity, while saline drops at different temperatures were applied to stimulate the OS. Neurons were recorded in the ophthalmic branch of the trigeminal ganglion (TG, 49 units), the thalamic VPM-POm nuclei representing the face (Th, 69 units) and the primary somatosensory cortex (S1, 101 units). The precise locations for Th and S1 neurons receiving OS information are reported here for the first time. Interestingly, all recorded nuclei encode modality both at the single neuron and population levels, with noxious stimulation producing a qualitatively different activity profile from other modalities. Moreover, neurons responding to new combinations of stimulus modalities not present in the peripheral TG subsequently appear in Th and S1, being organized in space through the formation of clusters. Besides, neurons that present higher multimodality display higher spontaneous activity. These results constitute the first anatomical and functional characterization of the thalamocortical representation of the OS. Furthermore, they provide insight into how information from different modalities gets integrated from the peripheral nervous system into the complex cortical networks of the brain. KEY POINTS: Anatomical location of thalamic and cortical ocular surface representation. Thalamic and cortical neuronal responses to multimodal stimulation of the ocular surface. Increasing functional complexity along trigeminal neuroaxis. Proposal of a new perspective on how peripheral activity shapes central nervous system function.


Assuntos
Núcleos Talâmicos , Tálamo , Ratos , Animais , Tálamo/fisiologia , Núcleos Talâmicos/fisiologia , Neurônios/fisiologia , Dor , Face , Córtex Somatossensorial/fisiologia
15.
Biochem Biophys Res Commun ; 708: 149800, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38522402

RESUMO

Previous human and rodent studies indicated that nociceptive stimuli activate many brain regions that is involved in the somatosensory and emotional sensation. Although these studies have identified several important brain regions involved in pain perception, it has been a challenge to observe neural activity directly and simultaneously in these multiple brain regions during pain perception. Using a transgenic mouse expressing G-CaMP7 in majority of astrocytes and a subpopulation of excitatory neurons, we recorded the brain activity in the mouse cerebral cortex during acute pain stimulation. Both of hind paw pinch and intraplantar administration of formalin caused strong transient increase of the fluorescence in several cortical regions, including primary somatosensory, motor and retrosplenial cortex. This increase of the fluorescence intensity was attenuated by the pretreatment with morphine. The present study provides important insight into the cortico-cortical network during pain perception.


Assuntos
Dor Aguda , Animais , Camundongos , Humanos , Córtex Somatossensorial , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Giro do Cíngulo , Diagnóstico por Imagem
16.
Sci Rep ; 14(1): 7235, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538727

RESUMO

Lifestyle choices leading to obesity, hypertension and diabetes in mid-life contribute directly to the risk of late-life Alzheimer's disease (AD). However, in late-life or in late-stage AD conditions, obesity reduces the risk of AD and disease progression. To examine the mechanisms underlying this paradox, TgF344-AD rats were fed a varied high-carbohydrate, high-fat (HCHF) diet to induce obesity from nine months of age representing early stages of AD to twelve months of age in which rats exhibit the full spectrum of AD symptomology. We hypothesized regions primarily composed of gray matter, such as the somatosensory cortex (SSC), would be differentially affected compared to regions primarily composed of white matter, such as the striatum. We found increased myelin and oligodendrocytes in the somatosensory cortex of rats fed the HCHF diet with an absence of neuronal loss. We observed decreased inflammation in the somatosensory cortex despite increased AD pathology. Compared to the somatosensory cortex, the striatum had fewer changes. Overall, our results suggest that the interaction between diet and AD progression affects myelination in a brain region specific manner such that regions with a lower density of white matter are preferentially affected. Our results offer a possible mechanistic explanation for the obesity paradox.


Assuntos
Doença de Alzheimer , Substância Branca , Ratos , Animais , Doença de Alzheimer/patologia , Córtex Somatossensorial , Encéfalo/patologia , Obesidade/patologia , Substância Branca/patologia , Modelos Animais de Doenças
17.
Cortex ; 173: 138-149, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394974

RESUMO

Although behavioral evidence has shown that postural changes influence the ability to localize or detect tactile stimuli, little is known regarding the brain areas that modulate these effects. This 7T functional magnetic resonance imaging (fMRI) study explores the effects of touch of the hand as a function of hand location (right or left side of the body) and hand configuration (open or closed). We predicted that changes in hand configuration would be represented in contralateral primary somatosensory cortex (S1) and the anterior intraparietal area (aIPS), whereas change in position of the hand would be associated with alterations in activation in the superior parietal lobule. Multivoxel pattern analysis and a region of interest approach partially supported our predictions. Decoding accuracy for hand location was above chance level in superior parietal lobule (SPL) and in the anterior intraparietal (aIPS) area; above chance classification of hand configuration was observed in SPL and S1. This evidence confirmed the role of the parietal cortex in postural effects on touch and the possible role of S1 in coding the body form representation of the hand.


Assuntos
Mapeamento Encefálico , Lobo Parietal , Humanos , Mapeamento Encefálico/métodos , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiologia , Postura , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mãos , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiologia
18.
Neuroimage ; 289: 120549, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382864

RESUMO

The directional organization of multiple nociceptive regions, particularly within obscure operculoinsular areas, underlying multidimensional pain processing remains elusive. This study aims to establish the fundamental organization between somatosensory and insular cortices in routing nociceptive information. By employing an integrated multimodal approach of high-field fMRI, intracranial electrophysiology, and transsynaptic viral tracing in rats, we observed a hierarchically organized connection of S1/S2 → posterior insula → anterior insula in routing nociceptive information. The directional nociceptive pathway determined by early fMRI responses was consistent with that examined by early evoked LFP, intrinsic effective connectivity, and anatomical projection, suggesting fMRI could provide a valuable facility to discern directional neural circuits in animals and humans non-invasively. Moreover, our knowledge of the nociceptive hierarchical organization of somatosensory and insular cortices and the interface role of the posterior insula may have implications for the development of targeted pain therapies.


Assuntos
Córtex Insular , Imageamento por Ressonância Magnética , Humanos , Ratos , Animais , Imageamento por Ressonância Magnética/métodos , Nociceptividade/fisiologia , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiologia , Mapeamento Encefálico , Dor
19.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38367614

RESUMO

The human body is represented in a topographic pattern in the primary somatosensory cortex (S1), and genital representation is displaced below the toe representation. However, the relationship between the representation of the genitals and toe in S1 remains unclear. In this study, tactile stimulation was applied to the big toe in healthy subjects to observe changes in tactile acuity in the unstimulated genital area, abdomen, and metacarpal dorsal. Then tactile stimulation was applied to the right abdomen and metacarpal dorsal to observe changes in tactile acuity in bilateral genitals. The results revealed that tactile stimulation of the big toe led to a reduction in the 2-point discrimination threshold (2PDT) not only in the stimulated big toe but also in the bilateral unstimulated genitals, whereas the bilateral abdomen and metacarpal dorsal threshold remained unchanged. On the other hand, tactile stimulation of the abdomen and metacarpal dorsal did not elicit 2-point discrimination threshold changes in the bilateral genitals. Cortical and subcortical mechanisms have been proposed to account for the findings. One explanation involves the intracortical interaction between 2 adjacent representations. Another possible explanation is that the information content of a specific body part is broadly distributed across the S1. Moreover, exploring the links between human behaviors and changes in the cerebral cortex is of significant importance.


Assuntos
Córtex Somatossensorial , Percepção do Tato , Humanos , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia , Tato/fisiologia , Córtex Cerebral , Dedos do Pé
20.
J Affect Disord ; 352: 509-516, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38412929

RESUMO

BACKGROUND: Psychological resilience is a protective factor of depression. However, the neuroimaging characteristics of the relationship between psychological resilience and brain imaging in depression are not very clear. Our objectives were to explore the brain functional imaging characteristics of different levels of resilience in female patients with depression. METHODS: Resting-state functional magnetic resonance imaging (rs-fMRI) was performed on 58 female depressed patients. According to the resilience score, participants were divided into three groups: Low resilience (Low-res), Medium resilience (Med-res) and High resilience (High-res). We compared the differences in the amplitude of low-frequency fluctuations (ALFF) and functional connectivity (FC) among the three groups and correlated psychological resilience with ALFF and FC. RESULTS: According to ALFF, there was a higher activation in RI and RPG in the High-res compared with Med-res and Low-res, but no significant differences between Med-res and Low-res. The FC between the RPG and supramarginal gyrus (SG) in the High-res was significantly stronger than that in the Med-res and the Low-res, and the FC of the Med-res is stronger than that of the Low-res. Both ALFF and FC were positively correlated with the score of resilience. LIMITATIONS: The sample size of this study was relatively small and it lacked healthy controls. The results of this study could be considered preliminary. CONCLUSIONS: Among female patients with depression, patients with higher psychological resilience had higher resting state activation in the RI and RPG and had a stronger interaction between the RPG and the SG.


Assuntos
Resiliência Psicológica , Humanos , Feminino , Córtex Somatossensorial , Imageamento por Ressonância Magnética/métodos , Encéfalo , Mapeamento Encefálico/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...